Saturday, September 30, 2023

An interesting water desalination advance

The boffins at MIT have come up with a desalination device that runs on sunlight and the laws physics. No electricity is required, so this thing operates completely off the grid.  They have designed a box a square meter in size (~10.8 sq ft) that can produce 5 liters of drinkable water per hour from seawater. The system can operate for several years without maintenance. The price for the water is less than the average US price for tap water. The system should be scalable to very large sizes.


A tilted ten-stage prototype floating in a salt water container -- the
tilt is needed to passively create water circulation which
prevents salt from accumulating and clogging the system
In a paper appearing today in the journal Joule, the team outlines the design for a new solar desalination system that takes in saltwater and heats it with natural sunlight.

The configuration of the device allows water to circulate in swirling eddies, in a manner similar to the much larger “thermohaline” circulation of the ocean. This circulation, combined with the sun’s heat, drives water to evaporate, leaving salt behind. The resulting water vapor can then be condensed and collected as pure, drinkable water. In the meantime, the leftover salt continues to circulate through and out of the device, rather than accumulating and clogging the system. 
The new system has a higher water-production rate and a higher salt-rejection rate than all other passive solar desalination concepts currently being tested.

The researchers estimate that if the system is scaled up to the size of a small suitcase, it could produce about 4 to 6 liters of drinking water per hour and last several years before requiring replacement parts. At this scale and performance, the system could produce drinking water at a rate and price that is cheaper than tap water.  
The small circulations generated in the team’s new system is similar to the “thermohaline” convection in the ocean — a phenomenon that drives the movement of water around the world, based on differences in sea temperature (“thermo”) and salinity (“haline”).

“When seawater is exposed to air, sunlight drives water to evaporate. Once water leaves the surface, salt remains. And the higher the salt concentration, the denser the liquid, and this heavier water wants to flow downward,” Zhang explains. “By mimicking this kilometer-wide phenomena in small box, we can take advantage of this feature to reject salt.”
The research paper is here (behind a paywall). A figure from the paper shows more clearly how the device works. The paper comments:
Using a confined saline layer as an evaporator, we initiate strong thermohaline convection to mitigate salt accumulation and enhance heat transfer. With a ten-stage device, we achieve record-high solar-to-water efficiencies of 322%–121% in the salinity range of 0–20 wt % under one-sun illumination. More importantly, we demonstrate an extreme resistance to salt accumulation with 180-h continuous desalination of 20 wt % concentrated seawater. With high freshwater production and extreme salt endurance, our device significantly reduces the water production cost, paving a pathway toward the practical adoption of passive solar desalination for sustainable water economy.

No comments:

Post a Comment