An article at the SungularityHub, The Trillion-Transistor Chip That Just Left a Supercomputer in the Dust, describes what seems to be the first actualization of an old idea in computer chips. The idea is to make computer processing chips bigger, not smaller. So far, all the innovation has gone into making chips and components smaller and smaller and smaller. At present, billions of transistors can be put on a small chip as shown above. The new wafer-scale engine (WSE) takes existing miniaturization technology to put a trillion transistors on a big chip. The big chip is made by Cerebras, a California startup company.
“The Cerebras Wafer-Scale Engine is massive any way you slice it. The chip is 8.5 inches to a side and houses 1.2 trillion transistors. The next biggest chip, NVIDIA’s A100 GPU, measures an inch to a side and has a mere 54 billion transistors. The former is new, largely untested and, so far, one-of-a-kind. The latter is well-loved, mass-produced, and has taken over the world of AI and supercomputing in the last decade.
When Cerebras first came out of stealth last year, the company said it could significantly speed up the training of deep learning models.
Since then, the WSE has made its way into a handful of supercomputing labs, where the company’s customers are putting it through its paces. One of those labs, the National Energy Technology Laboratory, is looking to see what it can do beyond AI.
So, in a recent trial, researchers pitted the chip—which is housed in an all-in-one system about the size of a dorm room mini-fridge called the CS-1—against a supercomputer in a fluid dynamics simulation. Simulating the movement of fluids is a common supercomputer application useful for solving complex problems like weather forecasting and airplane wing design.
The trial was described in a preprint paper written by a team led by Cerebras’s Michael James and NETL’s Dirk Van Essendelft and presented at the supercomputing conference SC20 this week. The team said the CS-1 completed a simulation of combustion in a power plant roughly 200 times faster than it took the Joule 2.0 supercomputer to do a similar task.The CS-1 was actually faster-than-real-time. As Cerebrus wrote in a blog post, ‘It can tell you what is going to happen in the future faster than the laws of physics produce the same result.’The researchers said the CS-1’s performance couldn’t be matched by any number of CPUs and GPUs. And CEO and cofounder Andrew Feldman told VentureBeat that would be true “no matter how large the supercomputer is.” At a point, scaling a supercomputer like Joule no longer produces better results in this kind of problem. That’s why Joule’s simulation speed peaked at 16,384 cores, a fraction of its total 86,400 cores.A comparison of the two machines drives the point home. Joule is the 81st fastest supercomputer in the world, takes up dozens of server racks, consumes up to 450 kilowatts of power, and required tens of millions of dollars to build. The CS-1, by comparison, fits in a third of a server rack, consumes 20 kilowatts of power, and sells for a few million dollars.Computer chips begin life on a big piece of silicon called a wafer. Multiple chips are etched onto the same wafer and then the wafer is cut into individual chips. While the WSE is also etched onto a silicon wafer, the wafer is left intact as a single, operating unit. This wafer-scale chip contains almost 400,000 processing cores. Each core is connected to its own dedicated memory and its four neighboring cores.”







